

Klimaschonende Nahwärmeversorgung durch Abwasserwärmenutzung im Projekt Celsius, Standort Köln

#### Aldo Perez

City of Cologne

Coordination Center for Climate Protection Department for Social Affairs, Integration and the Environment





3. BMUB-Fachtagung Klimaschutz durch Abwärmenutzung,

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 314441.



# **Agenda**

**CELSIUS – Brief description** 

**Cologne Demonstrators** 

**KPIs** 

**Wastewater Heat Potential** 

**Lessons Learned** 





## **CELSIUS** – Brief Description





• 10 New
Demonstration
Plants

Waste Heat Recovery & more

http://celsiuscity.eu/







## **CELSIUS** – Brief Description







## **Cologne Demonstrators**











# **Cologne Demonstrators**

#### Requirements for wastewater heat recovery

| Parameter                                   | Size     |        | Comments                             |
|---------------------------------------------|----------|--------|--------------------------------------|
| Dry weather flow rate (daily average) [l/s] | > 15 l/s |        | Mixed and dirty water sewage         |
| Size of the channel [mm]                    | > DN 800 |        |                                      |
| Heat power [kW]                             | > 150    | > 1000 | Central heating system               |
|                                             |          |        |                                      |
| Distance from the channel [m]               | 100-200  | < 300  | Dense house construction in the city |
|                                             |          |        |                                      |
| Heat source temperature                     | >12° C   |        |                                      |
| Supply temperature                          | 40 °C    | 70 °C  | COP >3, COP 5.6                      |

Table 1. Requirements for wastewater heat recovery [3]





## Cologne Demonstrators-Wahn





Figure 7: CO1 Drain heat exchanger in Wahn [3]

Heat exchanger long: 40m

Water Temp.: 10/22°C

• **Flow rate:** 220 l/s

Area Covered: 22000 m2.



Heat Demand: 1220 MWh/year

Gas Boiler Heating Power: 1MW

HP Heating Power: 200 kW





### Cologne Demonstrators-Mülheim



Figure 10: CO1 heat exchanger replication [5]

**Buildings:** 1 School 1 Sport hall

Water Temp.: 12/22°C

Flow rate: 100 l/s

Area Covered: 13000 m2.

Figure 9: CO1 Mülheim heat exchanger [3]





peak load boiler

**Heat Demand:** 750 MWh/year

**Gas Boiler Heating Power:** 860kW

**HP Heating Power:** 150 kW

Figure 11: CO1 Mülheim Layout[6]





## Cologne Demonstrators-Nippes



Fig. 12 CO1-Nippes Layout [3]

• Buildings: 3 Schools 1 Sport hall

• Water Temp.: 12/22°C

Flow rate: 30 l/s

Area Covered: 28000 m2.

Heat Demand: 2130 MWh/year

• Gas Boiler Heating Power:

760kW 880 kW 720 kW

HP Heating Power (x3):

150 kW





Energetic

Environmental

Economic

Social

Energy produced

CO<sub>2</sub> Emissions Cost per kWh of saved PE

Surface Area m2

Energy Recovered CO2 Savings Cost per ton of saved CO<sub>2</sub>

# Of residents clients benefitting from the project

Primary Energy saved Emissions (SO2,NOx,PM)

Emissions savings (SO<sub>2</sub>,NO<sub>x</sub>,PM) Reduction/in crease of complaints







Fig. 13 Primary Energy Savings CO1-Wahn and Muelheim KPIs diagram 2015-2016 [3,6,7]







Fig. 14 CO2 Savings CO1-Wahn and Mülheim KPIs diagram 2015-2016 [3,6,7]





2015-Wahn Heat Supply



2015-Muelheim Heat Supply



2016-Wahn Heat Supply



2016- Muelheim Heat Supply



Fig. 15 Heat Supply Share CO1-Wahn and Muelheim 2015-2016 [6,7]





### **Wastewater Heat Potential**



Capacity of large-scale heat pumps (LSHP) in Europe = 1423MW \*

Capacity of large-scale HP (sewage) in Europe = 742MW \*

\* According to Own Research





#### Wastewater Heat Potential



Fig.17 Wastewater Treatment Plants in Cologne [9]



#### **Methodology based on 5 Cities:**

Copenhaguen, Cologne, Hamburg, Gothenburg & Turku



#### **Input Data for 135 Cities:**

Population, heat sold, electricity and District heating energy mix, Investment costs, etc



#### **Upload into personal server:**

Wastewater heating potential App.





### **Waste Water Heat Potential**

Towards a 100% Sustainable World in collaboration with CELSIUS



| Home100%RE Webtool database - Own webtools - About buscar                                                                             |                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                       |                                                                                                                                                                                                                                                      |
| Wastewater heating potential Web-Application                                                                                          |                                                                                                                                                                                                                                                      |
| The heating sector has been receiving more attention in the last years, as Europe's dalmost half of its energy demand. Read more.     | ecarbonisation plans cannot succeed without focusing on the sector that represents                                                                                                                                                                   |
| as well as the data for the calculation. The results are shown in a interactive map an                                                | heat pumps in a given city. It shows the district heating annual sales of the selected city e. The tool was designed in such a way so that the user only needs to give a few input d with a graphs that allow a faster comprehension of the results. |
| Select the city you got do for and introduce the requested input parameters. Note: If you are not familiar corner of the input panels | ized with the requested data, please look at the suggested values in the help section (?) at the top right                                                                                                                                           |
| Input data                                                                                                                            | Results                                                                                                                                                                                                                                              |
| Düsseldorf v                                                                                                                          | Heating Potential [MW]                                                                                                                                                                                                                               |
| Full Operation Hours [hrs]                                                                                                            | 42.2                                                                                                                                                                                                                                                 |
| 5197                                                                                                                                  | Total Annual Heat Supplied by DH [GWh]                                                                                                                                                                                                               |
| Delta T [°C]                                                                                                                          | 958                                                                                                                                                                                                                                                  |
| 7                                                                                                                                     | DH Heat Supplied by Heat Pump [GWh]                                                                                                                                                                                                                  |
| COP[]                                                                                                                                 | 219.3                                                                                                                                                                                                                                                |
| 3.5                                                                                                                                   | Share of Potential DH Demand to be Covered [%]                                                                                                                                                                                                       |
| Choose the type of DH sytem                                                                                                           | 22.9                                                                                                                                                                                                                                                 |
| O Low intensive CO2 DH network                                                                                                        |                                                                                                                                                                                                                                                      |
| Medium intensive CO2 DH network                                                                                                       |                                                                                                                                                                                                                                                      |
| O High intensive CO2 DH network                                                                                                       |                                                                                                                                                                                                                                                      |
| Calculation                                                                                                                           |                                                                                                                                                                                                                                                      |
| Graph                                                                                                                                 |                                                                                                                                                                                                                                                      |
|                                                                                                                                       |                                                                                                                                                                                                                                                      |
| Fig. 18 Wastewater Heating Potential Web-Application Part 1 [10]                                                                      |                                                                                                                                                                                                                                                      |





## Wastewater Heat Potenti



Fig. 7 Wastewater Heating Potential Web-Application Part 2 [10]





#### **Lessons Learned**

- Prioritize objectives to designe a good control system
- Establish a **good partnership** with stakeholders, lern from other experiences
- Look for experieced companies
- Trust campaings with clients
- Key relationship- City Gov. & drainage utility
- Involvement of local specialist in WW





### **Conclusions**

- Significant heat potential for DH systems
- The use of wastewater makes sense from the energy efficiency and environmental point of view
- Control system is very important
- Define in a **smart** way the **objectives** of the plant
- We need the right **policies** to support heat pumps





# Thank you for your attention!



Email: aldoarmando.perezrodarte@stadt-koeln.de

Twitter: @AldoPerezR





#### Sources

- [1] CELSIUS Project Main Page Wiki. Retrieved on 02/10/2017 from: <a href="http://toolbox.celsiuscity.eu/index.php/Main\_Page">http://toolbox.celsiuscity.eu/index.php/Main\_Page</a>
- [2] Tillmann, Georg (2015). "DH And Heat Recovery In Cologne", Presentation.
- [3] Rheinenergie (2017). "D 3.18 Parameter Study Cologne Demonstrator Set". Retrieved o 02/11/2017 from: <a href="http://toolbox.celsiuscity.eu/">http://toolbox.celsiuscity.eu/</a>
- [4] CESIUS Project (2016) "Replication potential" Retrieved on 02.11.2017 from: http://toolbox.celsiuscity.eu/
- [5] CELSIUS Project (2016) "CO1 wastewater heat recovery" Retrieved on 02.11.2017 from <a href="http://toolbox.celsiuscity.eu/">http://toolbox.celsiuscity.eu/</a>
- [6] RheinEnergie A.G., TH-Köln (2015). "D4.3 Progress and achievements on each demonstrator and analysis of causes for deviation" Retrieved on 02.11.2017 from: <a href="http://toolbox.celsiuscity.eu/">http://toolbox.celsiuscity.eu/</a>
- [7] RheinEnergie A.G., TH-Köln (2016). "D4.3 Progress and achievements on each demonstrator and analysis of causes for deviation" Retrieved on 02.11.2017 from: <a href="http://toolbox.celsiuscity.eu/">http://toolbox.celsiuscity.eu/</a>
- [8] Erneuerbare Energien im Fernwärmenetz Hamburg, Hamburg Institut. Retrieved on 02/10/2017 from: <a href="http://www.hamburginstitut.com/images/pdf/studien/161207">http://www.hamburginstitut.com/images/pdf/studien/161207</a> Bericht BUE.pdf
- [9] Großklärwerk Köln-Stammheim. Retrieved on 02/10/2017 from: https://www.stebkoeln.de/Redaktionell/Downloads/klaerwerke/grossklaerwerk\_stammheim\_flyer.pdf
- [10] Wastewater heat potential webtool. Retrieved on 02/10/2017 from: <a href="http://towards100renewables.com/webpage/SWHP.html">http://towards100renewables.com/webpage/SWHP.html</a>



