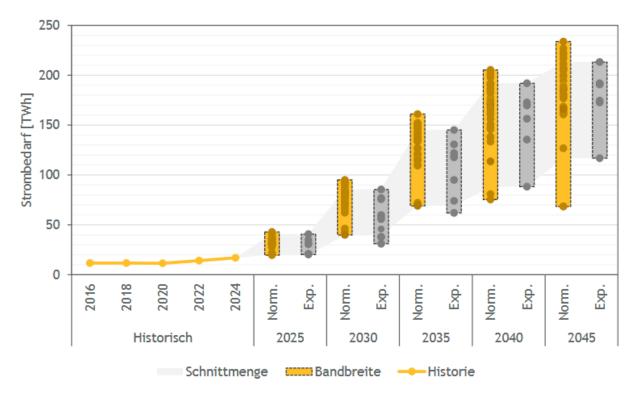


29.09.2025

Verteilnetzentlastung und dynamische Netzentgelte

EnergieKongress 2025


M. Sc. Steven Eich

Innovationsmanagement

Wieso das Ganze?

- Starke Zunahme der Leistung in der Niederspannung durch zunehmende Elektrifizierung der Sektoren Wärme und Verkehr
- Zubau dezentraler Erzeugungsanlagen
- Hohe erwartete Gleichzeitigkeit der jeweiligen Gruppen
- Erzeugung und Verbrauch zeitlich nur wenig übereinstimmend

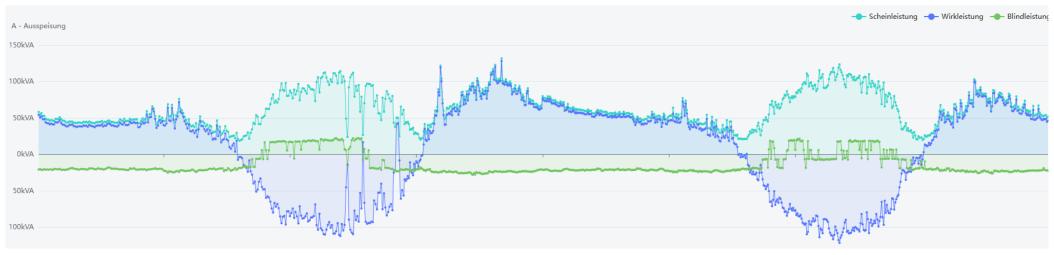
Entwicklung der Stromnachfrage im Verkehrssektor / Monitoringbericht September 2025

Begriffseinordnung

- Netzbelastung bzw. Netzengpässe
 - Betrachtung der normativen Grenzen (EN 50160, DIN VDE 0276....)
 - Betrachtung des fehlerfreien Normalbetriebes meist als symmetrische Belastung -> Nachbildung im Mitsystem
- Netzentgelte
 - Decken die Kosten für Bau, Betrieb, Wartung und Ausbau der Strom- und Gasnetze
 - Staatlich regulierte Infrastrukturfinanzierung
 - Basis ist Erlösobergrenze basierend auf nachgewiesenen Kosten
 - Unterteilt in Grundpreis und Arbeitspreis
 - Regional unterschiedlich und durch die verschiedenen Netzebenen (Übertragungsnetz bis Verteilnetz) bestimmt

Verteilnetzentlastung in der Praxis

- NOVA-Prinzip als Grundlage (Netz-Optimierung vor Verstärkung vor Ausbau)
- Netzverstärkung und Netzausbau:
 - Topologieänderungen im Netz
 - Netzausbau bei Leitungen, Ortsnetztransformatoren, Erweiterung von Umspannwerken ...
- Netz-Optimierung:
 - Digitalisierung der Niederspannung (Messwerterfassung, Einsatz digitaler Zwillinge...)
 - Maßnahmen nach § 14a EnWG (Steuerbare Verbrauchseinrichtungen) und § 9 EEG (Erzeugungsanlagen)
 - Dynamische Netzentgelte



Digitalisierung der Stromnetze

- Herstellen von Transparenz über Netzbelastung / Netzauslastung zentral
 - Ausbau von Messtechnik in Niederspannungsnetzen
 - Fernsteuerbarkeit und Messdatenerfassung in Mittelspannungsnetzen
 - Echtzeitprognosen über erwartetes Wetter
 - Daten aus intelligenten Messsystemen ("Smart-Meter")
- Integration digitaler Zwillinge in den Netzbetrieb
 - Aufbau eines rechenfähigen Netzabbildes in Netzberechnungsumgebung
 - Implementierung von Netzzustandsschätzung im Netzbetrieb
 - Simulationen von Schalthandlungen vor Ort im Feld
- Möglichkeiten zum "Dimmen" von steuerbaren Verbrauchseinrichtungen nach § 14a EnWG als Ultima Ratio

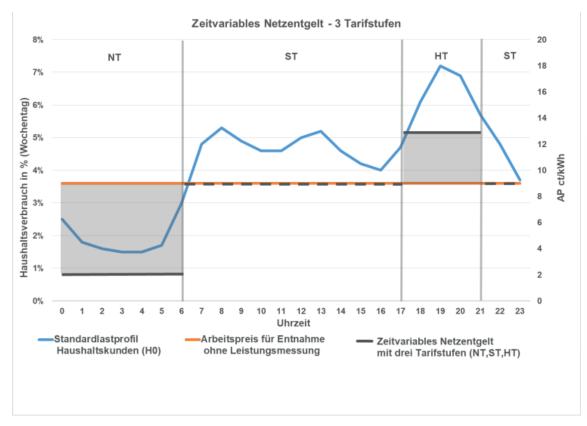
Digitalisierung der Stromnetze

Quelle: SWSLS

- Volatilität von Stromerzeugung und Stromverbrauch
 - Starke Rückspeisung in überlagerte Netzebenen treffen auf Strombezug innerhalb eines Tages
 - Verbrauch und Erzeugung liegen nicht in den gleichen Zeitfenstern
 - Fast die vollständige erzeugte Energie zurückgespeist

Dynamische Stromtarife

- die Kosten für die Strombeschaffung orientieren sich an einem Preissignal (i.d.R. am Börsenstrompreis)
 - Meist an Börsenstrompreis der europäischen Strombörse
 - Auch weitere dynamische Tarife möglich z.B. aus Basis lokaler Erzeugungsanlagen
- Intelligentes Messsystem notwendig
- Preise werden am Vortag in Viertelstunden- bzw. Stundenzeitscheiben übergeben
- Optimierung oft durch HEMS
- In der Regel ohne Berücksichtigung von lokalen Netzkomponenten


Dynamische Netzentgelte und Digitalisierung der Niederspannung

- Reduzieren der Netzausbaukosten durch bessere Kenntnis über Auslastung
- Gezielte Planung von Netzausbau und Netzverstärkung
- Erstellen der Datenbasis für den Einsatz von KI-Methoden wie KNN zur besseren Netzoptimierung
- Integrieren von weiteren Verbrauchern und Erzeugungsanlagen in die Netze

- Dynamische Preiskomponente zur Steuerung des Verbrauchsverhaltens auf lokaler Ebene
 - Gegenpol zu dynamischen Preissignalen der Strombörse
 - Berücksichtigung der lokalen Auslastung des Verteilnetzes
- Grundlage ist Modul 3 nach Festlegung § 14a EnWG

Modul 3 als erster Einstieg in die Möglichkeiten

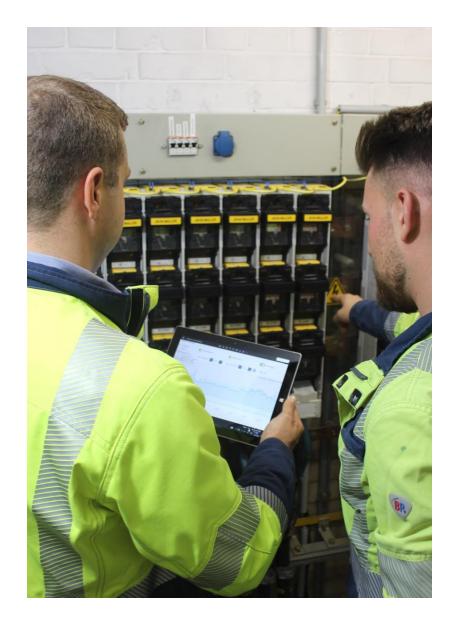
Quelle: ITEMS

- Modul 3 unterscheidet 3 Zeitzonen
 - Standardtarif ST
 - Hochtarif HT
 - Niedertarif NT
- Keine "echte" physikalische Beziehung zur Netzbelastung
- Komplizierte Berechnung anhand H0 Standardlastprofil
- BNetzA hat bewusst einfaches Modell gewählt
- Weitere Möglichkeiten können zukünftig herbeigeführt werden

Innovationsprojekt DynaNet

- Förderprojekt mit Start 01.08.2025
- Ausgestaltung eines dynamischen Netzentgelts auf Basis der aktuellen Netzbelastung
- Weiterentwicklung des Niederspannungsmonitorings und anbinden an eine Middle-Ware im Sinne eines Datenraums
- Einbeziehen von Netzauslastungs- und Wetterprognosen
- Analyse des regulatorischen Rahmens bezüglich Preisgestaltung, Netzentgelte, Umlagen und Steuern
- Erproben der Erkenntnisse in einem Feldtest mit privaten Haushalten

aufgrund eines Beschlusses des Deutschen Bundestages



Fragestellung im Forschungsprojekt DynaNet aus Sicht SWSLS

- Welche Verschiebung von Lasten k\u00f6nnen in Privathaushalten durch Preissignale erzielt werden?
 - Wie stark ist der Einfluss eines dynamischen Stromtarifs?
 - Wie wirkt sich eine zusätzliche Komponente auf Basis der Netzbelastung drauf aus?
 - Wie groß muss ein dynamisches Netzentgelt sein, damit hier eine relevante Wirkung erkennbar wird?
- Gibt es hier verschiedene Kundengruppen mit verschiedenen Affinitäten?
- Wie verhält sich ein Haushalt mit automatisiertem Home Energy Management System (HEMS) im vergleich?
- Ist diese Verschiebung deutlich messbar?
 - Auf Haushaltsebene im Vergleich zu erwartetem Verbrauch?
 - Aggregiert auf Abgangs- oder Ortsnetzebene auf Basis der Messwerte in den Ortsnetzstationen?
 - Lassen sich Prognosen für die Netzzustandsermittlung herausarbeiten?

Fragen?

Vielen Dank für Ihre Aufmerksamkeit.

Steven Eich

Stadtwerke Saarlouis GmbH Innovationsmanagement eich@swsls.de