Energiewende im Heizungskeller

Low-Ex Systeme

Sebastian Herkel, Fraunhofer ISE mit

- J. Glembin, ISFH
- D. Theis, IZES
- E. Sperber, DLR
- J. Binder, ZSW

Hintergrund

- Beitrag des Gebäudesektors zur Klimaschutzzielen
- Bestandsgebäude sind <u>die</u> große Herausforderung
- Notwendig: Kombination von baulichem Wärmeschutz und Dekarbonisierung der Heizungstechniken

Sektor-bezogene Klimaschutzziele

	Reduktion energiebedingter CO Emissionen von 2008 bis 203									
Sektor	um	auf dann								
Raumwärme/Warmwasser	62%	68 Mio t								
Verkehr	22%	144 Mio t								
Industrie/GHD	10%	62 Miot t								
Stromerzeugung	57%	162 Mio t								
Sonstige Umwandlungssektoren	35%	21 Mio t								
SUMME	45%	456 Mio t								

Klimapolitisch vorgesehene, Sektor-bezogene relative und absolute CO₂-Einsparungen von 2008 bis 2030 (nach /UBA, 2013/ und /BMWi 2013/)

Zielmatrix – baulicher Wärmeschutz / Dekarbonisierung Heizungstechniken

Endenergie RW	Endenergie RW + WW	spezifische COz-Emissionen für Raumwärme (RW) und Warmwasser (WW) in % bezogen auf den Wert in 2008																			
EERW	EERW+EEWW	100%	96%	94%	92%	89%	87%	84%	82%	80%	77%	75%	73%	70%	68%	66%	63%	61%	59%	56%	54%
% (2008)	% (2008)	CO ₂ -Emissionen für Raumwärme und Warmwasser in % bezogen auf den Wert in 2008																			
100%	100%	100.0	96.2	93.9	91.5	89.2	86.8	84.5	82.1	79.8	77.4	75.1	72.7	70.4	68.0	65.7	63.4	61.0	58.7	56.3	54.0
95%	96%	95.6	92.0	89.7	87.5	85.2	83.0	80.7	78.5	76.3	74.0	71.8	69.5	67.3	65.0	62.8	60.6	58.3	56.1	53.8	51.6
90%	91%	91.2	87.7	85.6	83.4	81.3	79.2	77.0	74.9	72.7	70.6	68.5	66.3	64.2	62.0	59.9	57.8	55.6	53.5	51.4	49.2
85%	87%	86.8	83.5	81.4	79.4	77.4	75.3	73.3	71.3	69.2	67.2	65.2	63.1	61.1	59.1	57.0	55.0	52.9	50.9	48.9	46.8
80%	82%	82.4	79.2	77.3	75.4	73.4	71.5	69.6	67.7	65.7	63.8	61.9	59.9	58.0	56.1	54.1	52.2	50.3	48.3	46.4	44.5
75%	78%	78.0	75.0	73.2	71.4	69.5	67.7	65.9	64.0	62.2	60.4	58.5	56.7	54.9	53.1	51.2	49.4	47.6	45.7	43.9	42.1
70%	74%	73.6	70.8	69.0	67.3	65.6	63.9	62.1	60.4	58.7	57.0	55.2	53.5	51.8	50.1	48.3	46.6	44.9	43.2	41.4	39.7
65%	69%	69.2	66.5	64.9	63.3	61.7	60.0	58.4	56.8	55.2	53.6	51.9	50.3	48.7	47.1	45.4	43.8	42.2	40.6	38.9	37.3
60%	65%	64.8	62.3	60.8	59.3	57.7	56.2	54.7	53.2	51.7	50.1	48.6	47.1	45.6	44.1	42.5	41.0	39.5	38.0	36.5	34.9
55%	60%	60.4	58.1	56.6	55.2	53.8	52.4	51.0	49.6	48.1	46.7	45.3	43.9	42.5	41.1	39.7	38.2	36.8	35.4	34.0	32.6
50%	56%	55.9	53.8	52.5	51.2	49.9	48.6	47.3	45.9	44.6	43.3	42.0	40.7	39.4	38.1	36.8	35.4	34.1	32.8	31.5	30.2
45%	52%	51.5	49.6	48.4	47.2	46.0	44.7	43.5	42.3	41.1	39.9	38.7	37.5	36.3	35.1	33.9	32.7	31.4	30.2	29.0	27.8
40%	47%	47.1	45.3	44.2	43.1	42.0	40.9	39.8	38.7	37.6	36.5	35.4	34.3	33.2	32.1	31.0	29.9	28.8	27.7	26.5	25.4

relative Werte (nach H.-M. Henning, Fraunhofer ISE)

Zielmatrix – baulicher Wärmeschutz / Dekarbonisierung Heizungstechniken

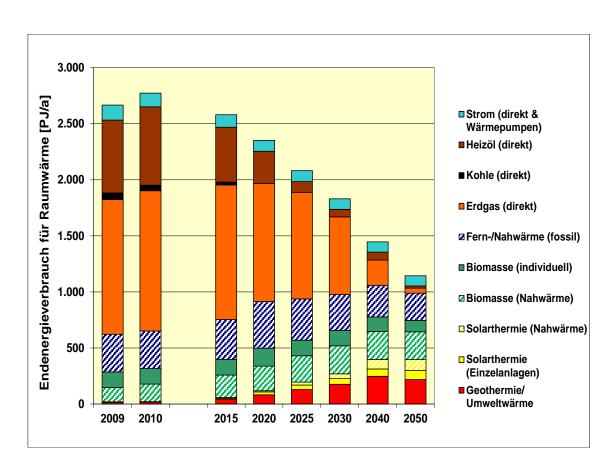
Endenergie RW	Endenergie RW + WW	spezifische CO2-Emissionen für Raumwärme (RW) und Warmwasser (WW) in % bezogen auf den Wert in 2008																			
EERW	EERW+EEWW	100%	96%	94%	92%	89%	87%	84%	82%	80%	77%	75%	73%	70%	68%	66%	63%	61%	59%	56%	54%
% (2008)	% (2008)	CO ₂ -Emissionen für Raumwärme und Warmwasser in % bezogen auf den Wert in 2008																			
100%	100%	100.0	96.2	93.9	91.5	89.2	86.8	84.5	82.1	79.8	77.4	75.1	72.7	70.4	68.0	65.7	63.4	61.0	58.7	56.3	54.0
95%	96%	95.6	92.0	89.7	87.5	85.2	83.0	80.7	78.5	76.3	74.0	71.8	69.5	67.3	65.0	62.8	60.6	58.3	56.1	53.8	51.6
90%	91%	91.2	87.7	85.6	83.4	81.3	79.2	77.0	74.9	72.7	70.6	68.5	66.3	64.2	62.0	59.9	57.8	55.6	53.5	51.4	49.2
85%	87%	86.8	83.5	81.4	79.4	77.4	75.3	73.3	71.3	69.2	67.2	65.2	63.1	61.1	59.1	57.0	55.0	52.9	50.9	48.9	46.8
80%	82%						-4					1.9	59.9	58.0	56.1	54.1	52.2	50.3	48.3	46.4	44.5
75%	78%				Rec	luk	KUI	on				8.5	56.7	54.9	53.1	51.2	49.4	47.6	45.7	43.9	42.1
70%	74%							_ (•	/_		5.2	53.5	51.8	50.1	48.3	46.6	44.9	43.2	41.4	39.7
65%	69%		Re	lui	nv	vai		et		0		1.9	50.3	48.7	47.1	45.4	43.8	42.2	40.6	38.9	37.3
60%	65%	9	no.	<i>,</i> г			ha	mi	oic			8.6	47.1	45.6	44.1	42.5	41.0	39.5	38.0	36.5	34.9
55%	60%		U7	o L)ek	lai	DC	Ш	516	#1 U	me	5.3	43.9	42.5	41.1	39.7	38.2	36.8	35.4	34.0	32.6
50%	56%	55.9	53.8	52.5	51.2	49.9	48.6	47		.6	43.3	42.0	40.7	39.4	38.1	36.8	35.4	34.1	32.8	31.5	30.2
45%	52%	51.5	49.6	48.4	47.2	46.0	44.7	43.5	42	1.1	39.9	38.7	37.5	36.3	35.1	33.9	32.7	31.4	30.2	29.0	27.8
40%	47%	47.1	45.3	44.2	43.1	42.0	40.9	39.8	38.7	37.6	36.5	35.4	34.3	33.2	32.1	31.0	29.9	28.8	27.7	26.5	25.4

relative Werte (nach H.-M. Henning, Fraunhofer ISE)

Zielmatrix – baulicher Wärmeschutz / Dekarbonisierung Heizungstechniken

Endenergie RW	Endenergie RW + WW											für R zogen											
EERW	EERW+EEWW	100%	96%	94%	92%	89%	87%	84%	82%	80%	77%	75%	73%	70%	68%	66%	63%	61%	59%	56%	54%		
% (2008)	% (2008)	CO ₂ -Emissionen für Raumwärme und Warmwasser in % bezogen auf den Wert in 2008																					
100%	100%	100.0	96.2	93.9	91.5	89.2	86.8	84.5	82.1	Doduktion 40													
95%	96%	95.6	92.0	89.7	87.5	85.2	83.0	80.7	78.5	 -													
90%	91%	91.2	87.7	85.6	83.4	81.3	79.2	77.0	74.9														
85%	87%	86.8	83.5	81.4	79.4	77.4	75.3	73.3	71.3	Raumwärme 40%: 🕌													
80%	82%	82.4	79.2	77.3	75.4	73.4	71.5	69.6	67.7		G	40/	/			bo	an i	oic			4.5		
75%	78%	78.0	75.0	73.2	71.4	69.5	67.7	65.9	64.0		O		O L	er	lai	DU	Ш	516	ar u	ME	2.1		
70%	74%	73.6	70.8	69.0	67.3	65.6	63.9	62.1	60.4	58.7	57.0	55.2	53.5	51.8	50.1	48.3	-		3.2	41.4	39.7		
65%	69%	69.2	66.5	64.9	63.3	61.7	60.0	58.4	56.8	55.2	53.6	51.9	50.3	48.7	47.1	45.4	43.8	4.	0.6	38.9	37.3		
60%	65%	64.8	62.3	60.8	59.3	57.7	56.2	54.7	53.2	51.7	50.1	48.6	47.1	45.6	44.1	42.5	41.0	39.5	38.0	36.5	34.9		
55%	60%	60.4	58.1	56.6	55.2	53.8	52.4	51.0	49.6	48.1	46.7	45.3	43.9	42.5	41.1	39.7	38.2	36.8	35.4	34.0	32.6		
50%	56%	55.9	53.8	52.5	51.2	49.9	48.6	47.3	45.9	44.6	43.3	42.0	40.7	39.4	38.1	36.8	35.4	34.1	32.8	31.5	30.2		
45%	52%	51.5	49.6	48.4	47.2	46.0	44.7	43.5	42.3	41.1	39.9	38.7	37.5	36.3	35.1	33.9	32.7	31.4	30.2	29.0	27.8		
40%	47%	47.1	45.3	44.2	43.1	42.0	40.9	39.8	38.7	37.6	36.5	35.4	34.3	33.2	32.1	31.0	29.9	28.8	27.7	26.5	25.4		

relative Werte (nach H.-M. Henning, Fraunhofer ISE)

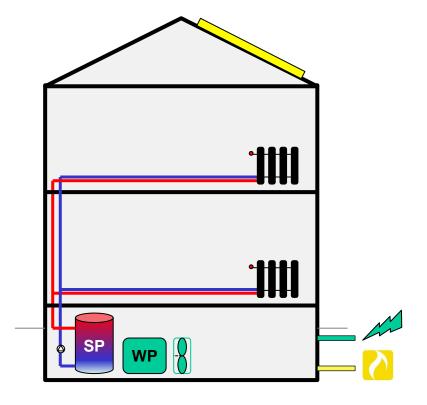


Strukturwandel im Raumwärmesektor

gemäß DLR-Leitstudie 2011 Szenario A

Ausgewogener Mix bis 2050:

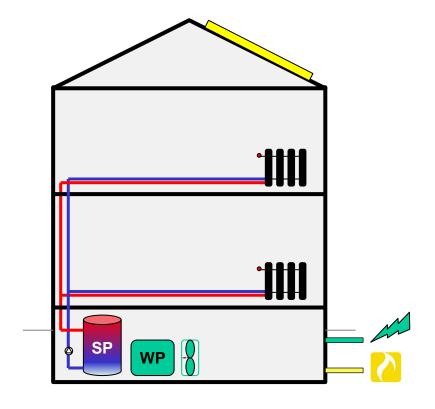
- Reduktion EEV Raumwärme um ca. 60 %
- Von verbleibendem Bedarf knapp 60 % aus EE gedeckt
- Öl- und Erdgaskessel fast gänzlich aus Raumwärmemarkt verbannt
- Stärkere Vernetzung von Strom- und Wärmemarkt durch KWK und Wärmepumpen
- Hohes Wachstum bei Wärmepumpen und ggf. Solarthermie
- LowEx Systeme werden zentrale Technologie



LowEx Technologien für die Energiewende im Heizungskeller

Wandler

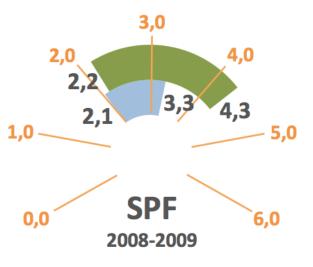
- Elektrische Wärmepumpen
- Thermische Wärmepumpen
- Solarthermie
- Fernwärme
- (KWK, Brenner)
- Quellen
- Speicher
- Verteilung und Übergabesysteme
- Interaktion
 - Elektrisches Netz
 - Gasnetz / Biomasse
 - (Wärmenetze)

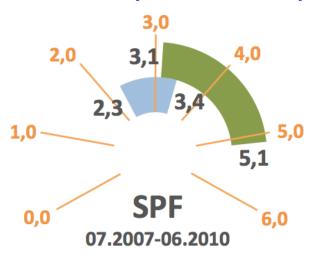


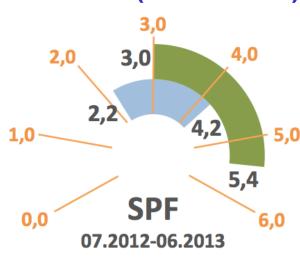
LowEx Technologien für die Energiewende im Heizungskeller

Wandler

- Elektrische Wärmepumpen
- Thermische Wärmepumpen
- Solarthermie
- Fernwärme
- (KWK, Brenner)
- Quellen
- Speicher
- Verteilung und Übergabesysteme
- Interaktion
 - Elektrisches Netz
 - Gasnetz / Biomasse
 - (Wärmenetze)



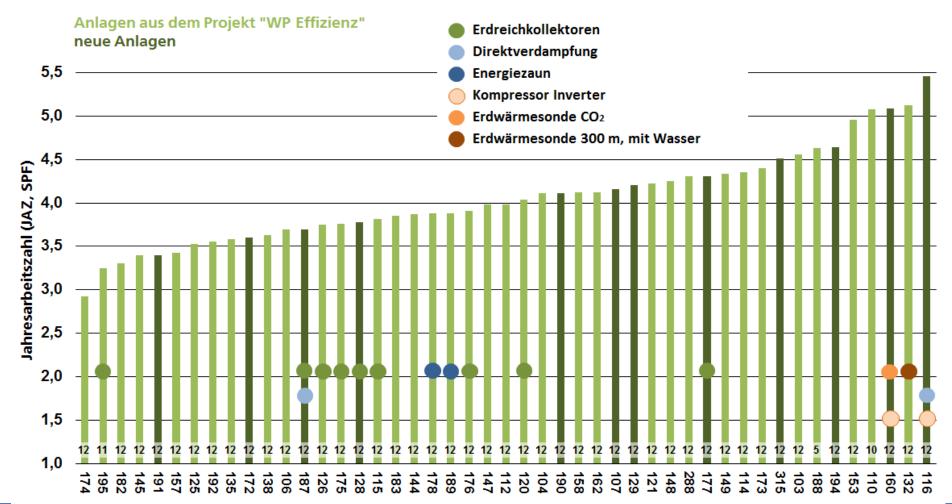




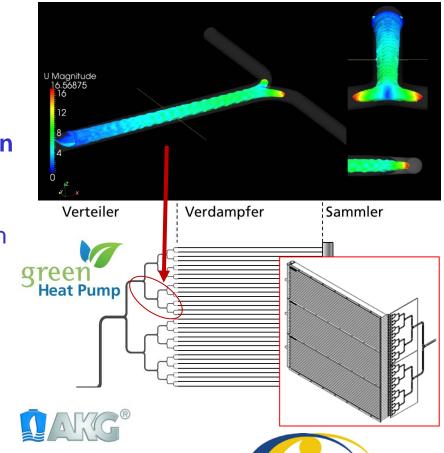
Arbeitszahlen Wärmepumpen – Überblick, **Bandbreiten**

WP im Gebäudebestand **Neubau (WP Effizienz) Neubau (WP Monitor)**

- Luft/Wasser-Wärmepumpenanlagen
- Sole/Wasser-Wärmepumpenanlagen

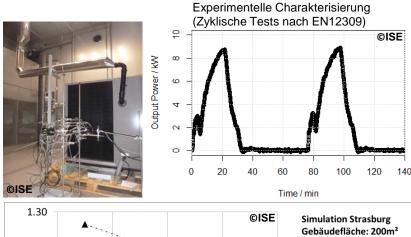


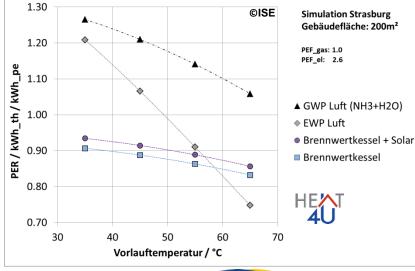
JAZ Sole/Wasser – Wärmepumpen Projekt "WP Monitor", Juli 2012 – Juni 2013



Optimierung Wärmepumpen Kältemittelkreis

- Effizienz von Luft-Wasser Wärmepumpen steigern: Hohe Leistung und geringe Umweltbelastung
- durch den Einsatz von erweiterten Systemintegrationskonzepten
 - Beispiel: Substitution herkömmlicher Kältemittel durch z.B. R290 (Propan)
- Durch Optimierung auf Komponentenebene
 - Beispiel: Optimierung Druckverlust Fluidverteiler und Wärmetauscher

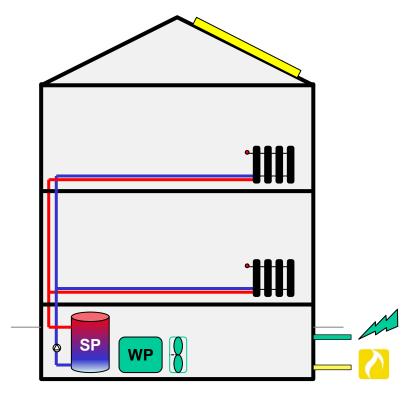




Thermisch angetriebene Wärmepumpen

- **Luft-Wasser Absorptions**wärmepumpen im Bestand:
 - Gute Charakteristik auch bei hohen Vorlauftemperaturen (NH₃+Wasser Absorption)
 - Vermessung im Labor und im Feld (Projekt Heat4U – EU FP7)
- **Entwicklung von Adsorptions**wärmepumpen:
 - Steigerung Leistungskennzahlen durch neue Kompositmaterialien und Wärmeüber-

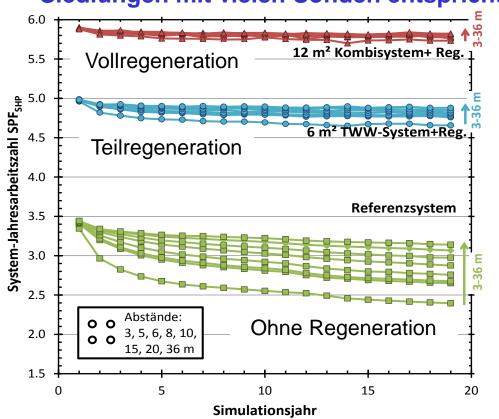
tragerkonzepte

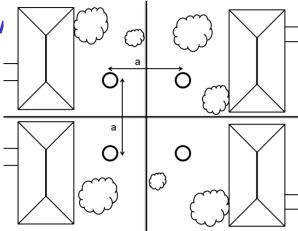


LowEx Technologien für die Energiewende im Heizungskeller

Wandler

- Elektrische Wärmepumpen
- Thermische Wärmepumpen
- Solarthermie
- Fernwärme
- (KWK, Brenner)
- Quellen
- Speicher
- Verteilung und Übergabesysteme
- Interaktion
 - Elektrisches Netz
 - Gasnetz / Biomasse
 - (Wärmenetze)

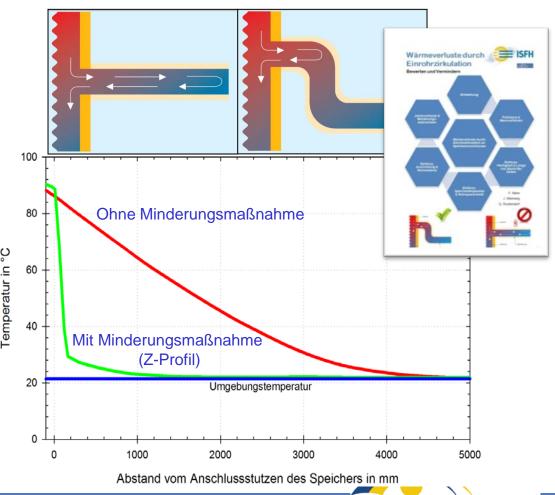




Solare Regeneration von Erdwärmesondenfeldern

Siedlungen mit vielen Sonden entspricht Erdw

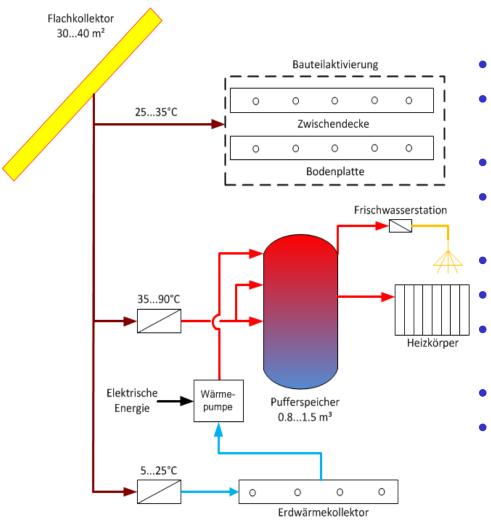
- Ohne Regeneration: Langfrist-Drift mit Mehrverbrauch
- Solare Regeneration vermeidet Problem vollständig
- Vereinfacht Planung und Genehmigung



Einrohrzirkulation – unerwünschter Effekt

Einrohrzirkulation (ERZ)

- tritt auf an Speichern, Kesseln, Verteilern, ...
- Verluste in typischen EFH-Speichern: 200-400 kWh/a
- damit allein verantwortlich
 für ca. 0,15% der
 Endenergie in D
- Kostengünstig vermeidbar
- Praxishandbuch liegt vor (www.isfh.de)



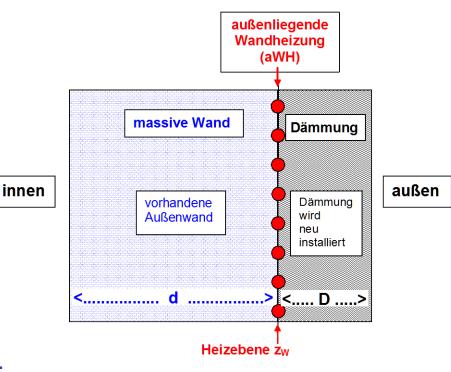
Sonnenhaus mit kleinem Speicher

- Solare Bauteilaktivierung
- Nutzung bereits vorhandener Gebäude-Speichermasse
- Kostengünstig ausführbar
- Solare Wärme direkt nutzbar, keine Zwischenspeicherung nötig
- Niedrige Temperatur hoher Ertrag
- Projektergebnisse
- Gleich hohe solare Deckung wie Sonnenhaus mit großem Speicher
- Höhere solare Erträge im Winter
- Neue Regelung belädt die Senke mit dem größtem Einspareffekt

RESOL®

Sonnenhaus mit kleinem Speicher

- Experimentalgebäude
- Fertigstellung Herbst 2014
- Erwarteter Endenergiebedarf 8,5 kWh/m²a (elektrisch)
- Überprüfung der
 - positiven Simulationsergebnisse
 - Robustheit des Konzepts
- Kostenreduktion bereits bei erstem Prototyp gezeigt



Ubergabesysteme Außenliegende Wandheizung

Kernthema des Projektes ist die außenliegende Wandheizung (aWH)

- Einsatz von LowEx-Wärme möglich
- Massive Außenwand ist auch als Wärme- oder Kältespeicher nutzbar (thermische Bauteilaktivierung)
- Sanierung des Heizsystems "von außen" möglich, dabei geringe Beeinträchtigung für die Bewohner
- Aktueller Stand:
 - Simulations studien mit TRNSYS bzgl. Potenzial der aWH/aLH (u.a. Primärenergieeinsparung)

Forschungsprojekt "LEXU II – Feldtest" "Low Exergy Utilisation – Einsatz von außenliegender Wandheizung bei der Gebäudesanierung"

Ubergabesysteme Außenliegende Wandheizung

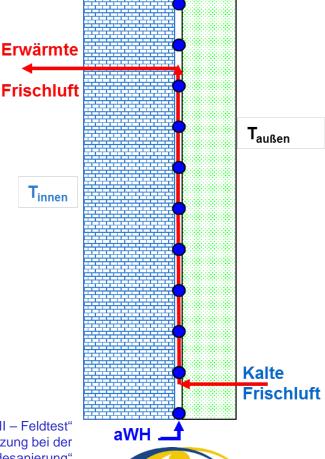
Erweiterung der aWH zu einer außenliegenden Luftheizung (aLH)

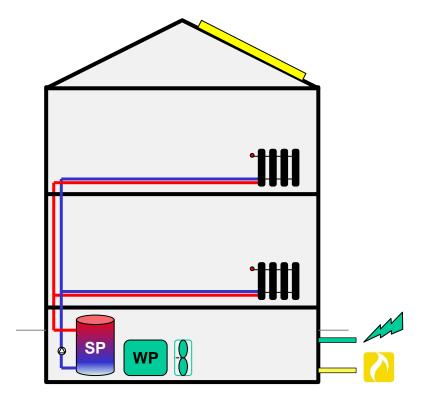
Durch Einbau eines Luftspalts wird die aWH zur Frischlufterwärmung genutzt.

Positive Effekte:

- Nutzung von noch niedrigeren Temperaturen
- Die träge regelbare aWH wird durch die schnell reagierende aLH ergänzt
- Volle Deckung des Heizwärmebedarfs über Kombination aWH/aLH erscheint möglich

Forschungsprojekt "LEXU II – Feldtest" "Low Exergy Utilisation – Einsatz von außenliegender Wandheizung bei der Gebäudesanierung"



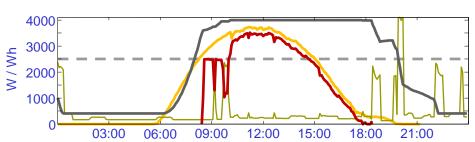


LowEx Technologien für die Energiewende im Heizungskeller

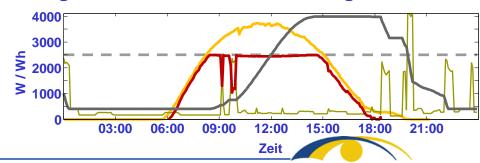
Wandler

- Elektrische Wärmepumpen
- Thermische Wärmepumpen
- Solarthermie
- Fernwärme
- (KWK, Brenner)
- Quellen
- Speicher
- Verteilung und Übergabesysteme
- Interaktion
 - Elektrisches Netz
 - Gasnetz / Biomasse
 - (Wärmenetze)

Lastmanagement und Netzentlastung

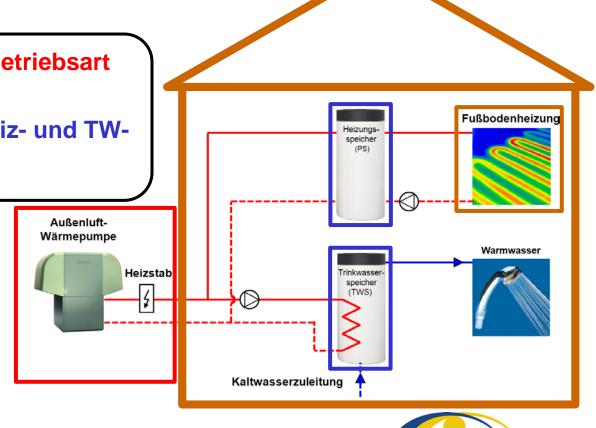

Optimierungsziele für die Wärmepumpensteuerung und die Speichernutzung:

- soviel Eigenverbrauch wie möglich
- sowenig Leistungsspitzen ins Netz wie möglich


- -- Maximale Einspeiseleistung
- PV Leistung [W]
- Verbrauch [W]
- Eingespeiste Leistung [W]
- Energieinhalt der Batterie [Wh]

Direktes Laden

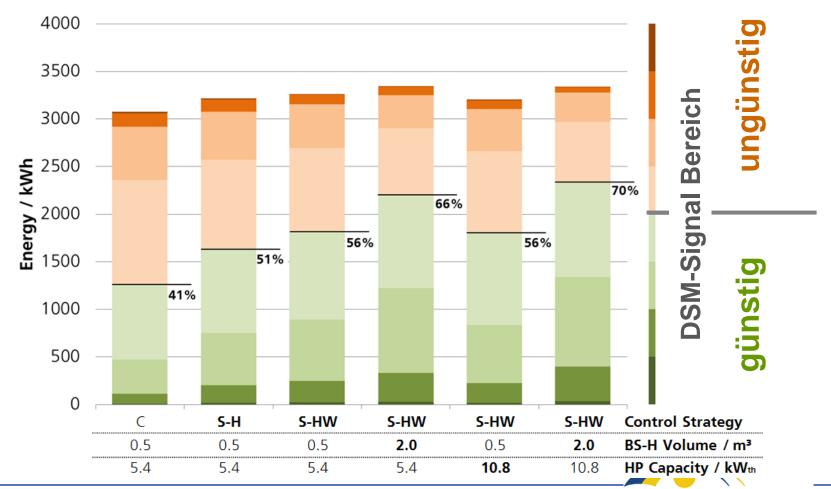
Verzögertes Laden bzw. "Peak Shaving"



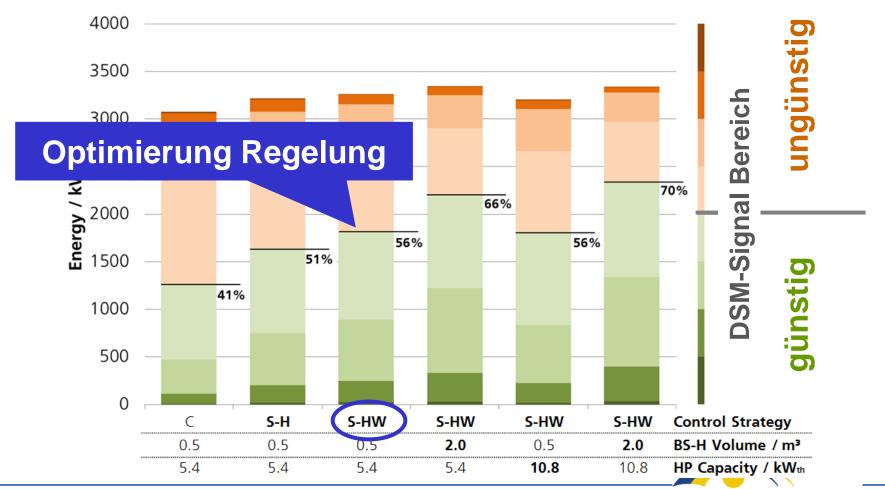
Lastverschiebungspotenzial Wärmepumpensysteme

Speicherkapazität in Heiz- und TW-Speichern

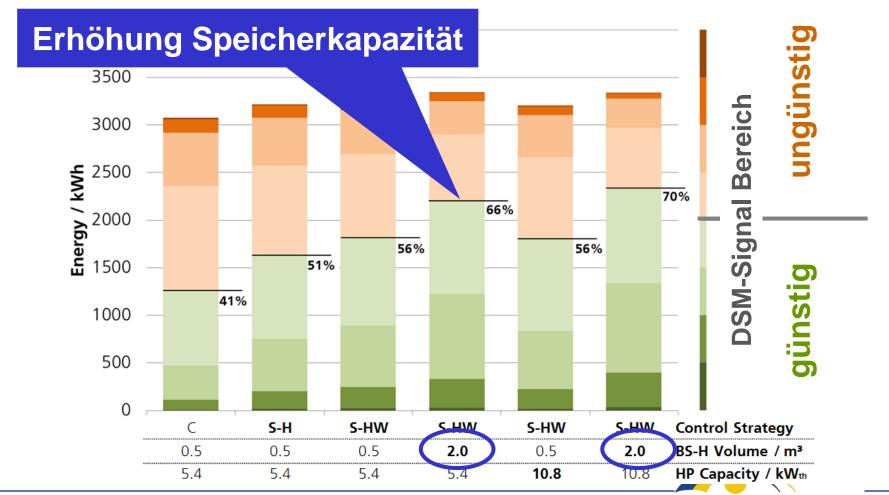
Aktivierung von Gebäudemasse und Fußbodenheizung



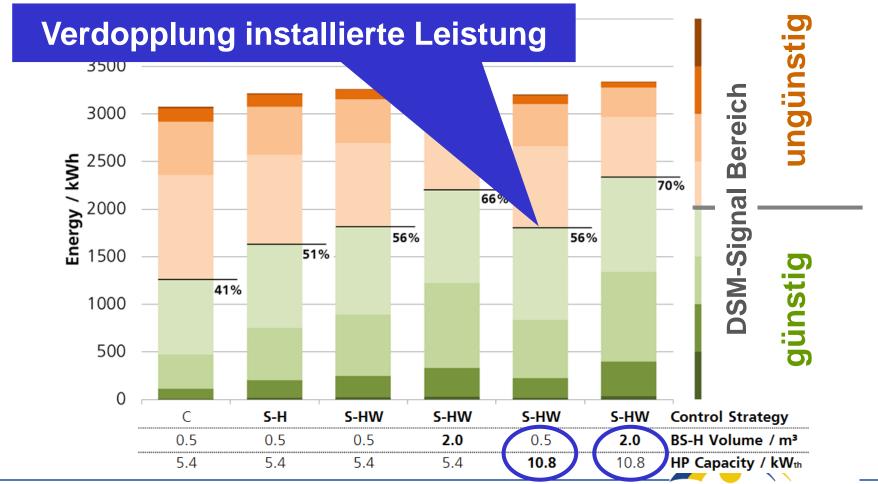
Lastverlagerung in den netzdienlichen Bereich



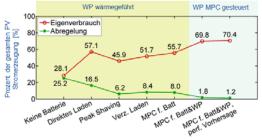
Lastverlagerung in den netzdienlichen **Bereich**



Lastverlagerung in den netzdienlichen Bereich



Lastverlagerung in den netzdienlichen Bereich



Lastverschiebepotentiale PV / Wärmepumpensysteme

Einfamilienhaus mit angepaßter PV-Anlage an den Jahresverbrauch der Haushaltsgeräte

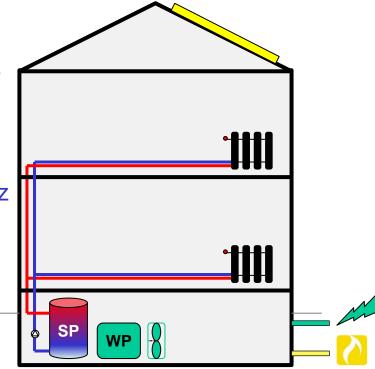
Eigenverbrauch und Autarkie von ~30%

Wy but single of the first of t

Weitere Erhöhung der Eigenversorgung durch zeitliche Anpassung des Bedarfs an das Solarangebot:

- angepaßten Betrieb der Wärmepumpe (Lastmanagement / modellprädiktive Regelung)
- elektrische und thermische Speicherung

Gleichzeitig netzdienlicher Betrieb erreichbar



Fazit

- Nutzung von Umweltwärme in großem Umfang in Bestandsgebäuden
 - Elektrische Wärmepumpen werden backstop Technologie
 - Thermische Wärmepumpen und Hybridsysteme erlauben eine schnelle Umstellung bei gut ausgebautem Gasnetz
 - Jeweils Anpassung und Optimierung der Quellen- und Senkenseite
- mKWK, Biomassekessel dort wo hohe Temperaturen unvermeidlich sind
- Systemische Aspekte werden wichtiger: Integration in Sanierungsprozess und Interaktion mit den Netzen

