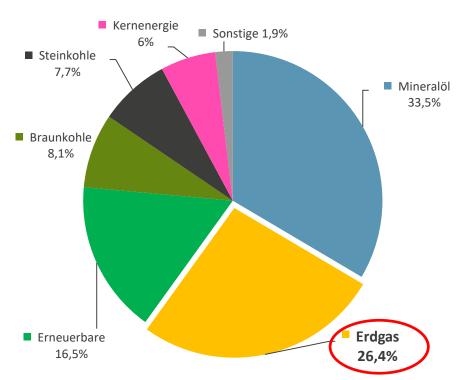


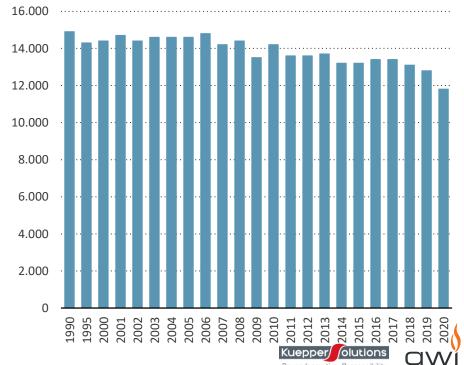
www.gwi-essen.de

Neue Fertigungsverfahren zur Effizienzsteigerung bei kompakten Wärmeübertragern am Beispiel der Thermoprozessindustrie

7. BMU-Fachtagung "Klimaschutz durch Abwärmenutzung"

Tim Schneider, 04.11.2021

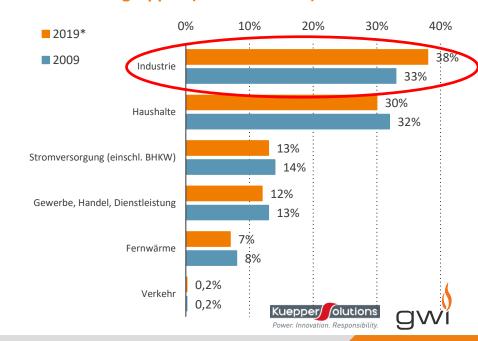

Energieverbrauch der Industrie



Primärenergieverbrauch in Deutschland

Primärenergieverbrauch in Deutschland 2020 - Anteil der Energieträger (Gesamt 11.784 PJ)


Primärenergieverbrauch in Deutschland in PJ in den Jahren 1990 bis 2020 (- 20 %)


Erdgas ist ein bedeutender Energieträger für Haushalte und Industrie

Der Primärenergieverbrauch von Erdgas in Deutschland unterliegt saisonalen Schwankungen. 30 % des in Deutschland verteilten Erdgases wird im Wärmemarkt, fast 40 % in der Industrie eingesetzt.

Erdgasverbrauch in Mrd. m³/a in Deutschland von 1980 bis 2020

Anteil Erdgasverbrauch in Deutschland nach Verbrauchergruppen (2009 und 2019)

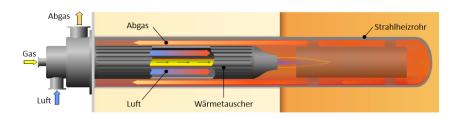
Effizienzsteigerung der Industrie

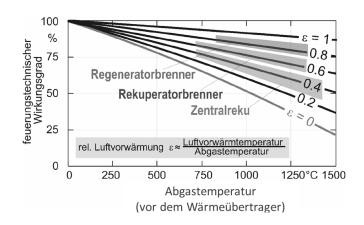
- Zur Erreichung der Klimaziele ist langfristig eine Substitution fossiler Brennstoffe wie Erdgas durch erneuerbare Brennstoffe (z. B. grüner Wasserstoff) notwendig...
- ... **dennoch** werden kurzfristig verfügbare, effizienzsteigernde Maßnahmen benötigt, um einen **nachhaltigen Umgang** mit derzeitigen und zukünftigen Ressourcen zu ermöglichen.
- In der Thermoprozessindustrie haben sich folgende effizienzsteigernde Maßnahmen etabliert:
 - Luftüberschuss λ reduzieren (nah-stöchiometrische Verbrennung)
 - Verbrennung mit reinem Sauerstoff (Oxy-Fuel-Verbrennung)
 - Verbrennungsluftvorwärmung durch Abwärmenutzung

Luftvorwärmung in Industrieprozessen

Luftvorwärmung in Industrieprozessen

- Im Bereich der Bereitstellung von Prozesswärme durch gasförmige Brennstoffe für Thermoprozesse wird zur Ressourceneinsparung oft auf eine **Vorwärmung der Verbrennungsluft,** da diese am effizientesten ist, zurückgegriffen.
- Die Verbrennungsluftvorwärmung erfolgt durch Abwärme aus dem heißen Ofenabgas
- Eine Vorwärmung des Oxidators hat eine gesteigerte Prozesstemperatur, einen verringerten Brennstoffbedarf und als Resultat einen geringeren Ausstoß an Kohlenstoffdioxid zur Folge.
- Es wird die im heißen Abgas enthaltene Wärme genutzt, um die zugeführte Verbrennungsluft direkt (rekuperativ) oder indirekt über ein Wärmespeichermedium (regenerativ) vorzuwärmen.





Rekuperatorbrenner – Stand der Technik

Rekuperatorbrenner stellen eine Möglichkeit der Wärmerückführung aus dem Abgas in den Ofen dar

- Wärmeübertrager- und Brennereinheiten befinden sich in einem Bauteil
- Fertigung üblicherweise aus Keramik oder
 Stahl
- Geringes Bauvolumen und wenig Anforderungen an den Betrieb
- Verringerte Wirkungsgrade gegenüber anderen Technologien

Forschungsvorhaben AdReku

Forschungsvorhaben AdReku

Gefördert über das Bundesministerium für Wirtschaft und Energie (BMWi) über den Projektträger Jülich

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

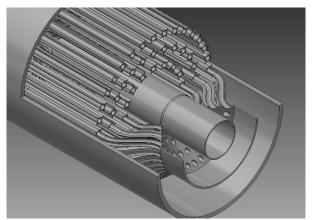
Forschungsstellen:

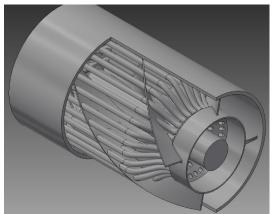
Gas- und Wärme-Institut Essen e. V. (GWI, Koordinator)
 Hafenstr. 101
 45356 Essen

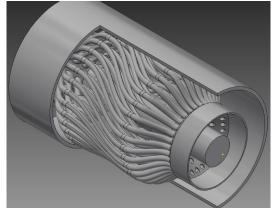
Kueppers Solutions GmbH
 Uechtingstraße 19
 45881 Gelsenkirchen

Forschungsvorhaben AdReku

Hauptziel: Energieeinsparung und Schadstoffminderung durch die Nutzung eines neuartigen, additiv gefertigten Brennersystems bestehend aus einem Rekuperator und einer Mischeinheit (AdReku)

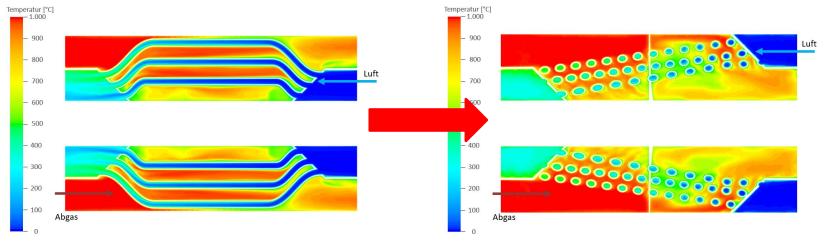

Teilziele:

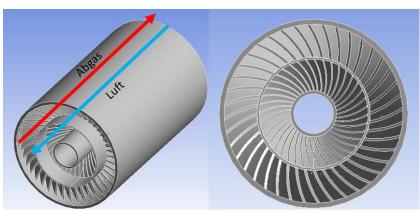

- Nutzung additiver Bauteilherstellung zur Vermeidung von Einschränkungen konventioneller Fertigungsverfahren bei der Auslegung
 - Optimierung der Strömungsmechanik und Wärmeübertragung bei kompakter Bauweise
 - Erreichen sehr hoher Luftvorwärmtemperaturen durch einen Rekuperator aus verschiedenen Werkstoffen (Keramik, Edelstahl, Kupfer)
- Schadstoffeinsparung durch eine neuartige Mischeinheit, mit modulierter Verbrennung und sehr guter Durchmischung
- Ermöglichen der Nutzung von Gasen aus regenerativen Quellen durch die grundliegende Neukonzipierung des Brennersystems

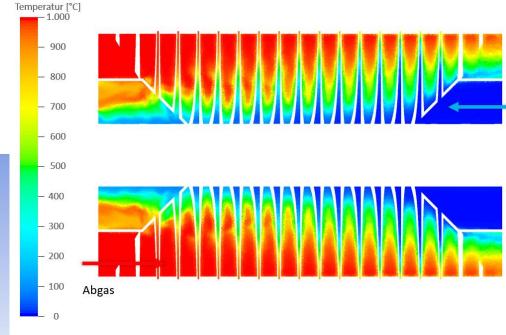


Optimierung mithilfe des 3D-Drucks – I

- Die Entwicklung der Geometrien für den Rekuperator basieren auf den Freiheitsgraden der additiven Fertigung
- Im ersten Schritt wurden konventionelle Geometrien mithilfe der Möglichkeiten des 3D-Drucks grundliegend überarbeitet und numerisch (CFD) untersucht, zum Beispiel der Rohrbündelwärmeübertrager im Gegenstrombetrieb

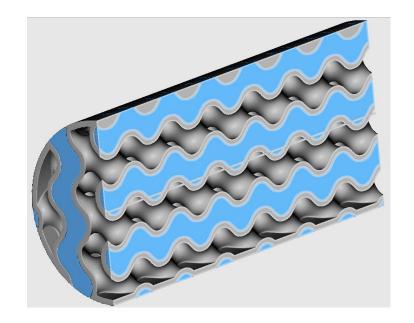

Rohrwärmeübertrager mit Rippen/ Leitblechen/ verdrallten Rohren


Optimierung mithilfe des 3D-Drucks – II


• Durch Optimierungsmaßnahmen wie Leitbleche, Drallströmungen und Rippen konnten bereits deutliche Verbesserungen der Wärmeübertragung erzielt werden

Optimierung mithilfe des 3D-Drucks - III

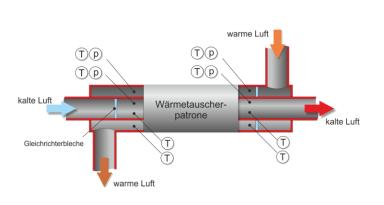
Ein weiterer, vielversprechender Ansatz war ein Plattenwärmeübertrager mit gefächerter Anordnung der Kanäle

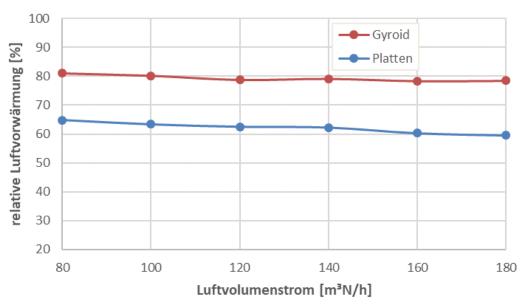


Neue Wege durch innovative Geometrien

Um die gesteckten Ziele hinsichtlich der Wärmeübertragung bei moderaten Druckverlusten zu erreichen, wurden jedoch mit sog. TMPS-Geometrien neue Wege bestritten:

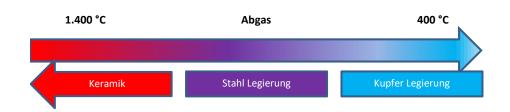
- TPMS ("triply periodic minimal surface") sind Minimalflächen, welche bereits in den 1960er Jahren beschrieben wurden, bisher aufgrund der Komplexität jedoch nicht herstellbar waren
- Sie zeichnen sich dadurch aus, dass es im gesamten Körper keine geraden Flächen gibt





Untersuchungen der Rekuperatoren

Der TPMS-Rekuperator bietet deutliche Vorteile gegenüber konventionellen Geometrien



Verschiedene Werkstoffe in einem Rekuperator

Zur Optimierung der Wärmeübertragung im Rekuperator werden mehrere Werkstoffzonen genutzt, um die jeweiligen Werkstoffeigenschaften optimal zu nutzen:

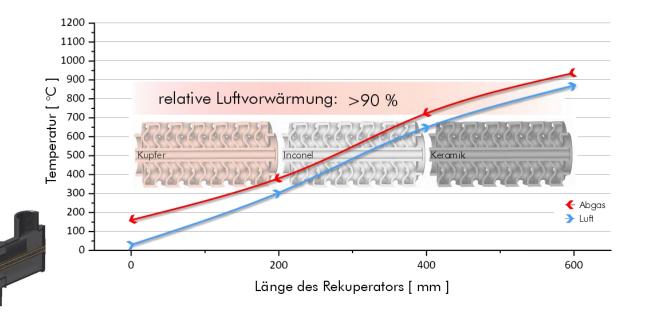
- Keramik für den Hochtemperaturbereich
- **Stahl** für den mittleren Temperaturbereich
- Kupfer für den Niedertemperaturbereich

	Siliciumcarbid	Inconel	Kupferlegierung
Temperaturfenster in °C	1.350 - 900	900 - 450	< 450
Wärmeleitfähigkeit im Temperaturfenster in W/(m*K)	ca. 24	ca. 15	ca. 330

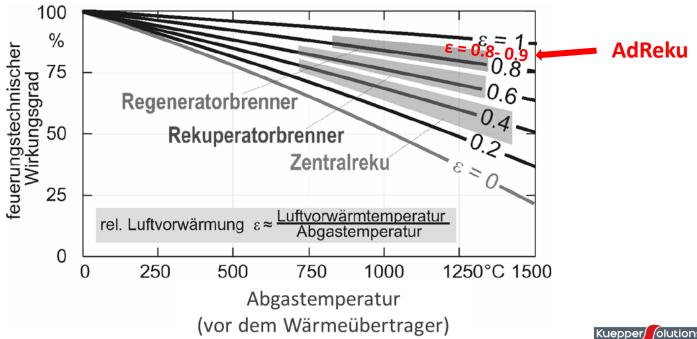
Verschiedene Werkstoffe in einem Rekuperator

Zur Optimierung der Wärmeübertragung im Rekuperator werden mehrere Werkstoffzonen genutzt, um die jeweiligen Werkstoffeigenschaften optimal zu nutzen:

- Keramik für den Hochtemperaturbereich
- **Stahl** für den mittleren Temperaturbereich
- **Kupfer** für den Niedertemperaturbereich



Untersuchungen des Rekuperatorbrenners - Relative Luftvorwärmung



Einordnung der Ergebnisse

Referenzwerte für Rekuperatorbrenner können deutlich übertroffen werden.

Zusammenfassung

Zusammenfassung

- Mithilfe des 3D-Drucks können die Wärmeübertragungspotentiale kompakter Wärmeübertrager besser genutzt werden als bisher
- Durch innovative Geometrien und Werkstoffkombinationen k\u00f6nnen relative Luftvorw\u00e4rmungsgrade bis zu 90 % f\u00fcr rekuperative Brenner erreicht werden
- Zudem: Die entstehenden Stickoxidemissionen durch höhere Verbrennungstemperaturen konnten durch brennerseitige Primärmaßnahmen deutlich gesenkt werden.

Vielen Dank für Ihre Aufmerksamkeit

Tim Schneider

Gas- und Wärme-Institut Essen e. V.

Hafenstrasse 101

45356 Essen

Tel.: +49 (0) 201 36 18 250

Mail: tim.schneider@gwi-essen.de

