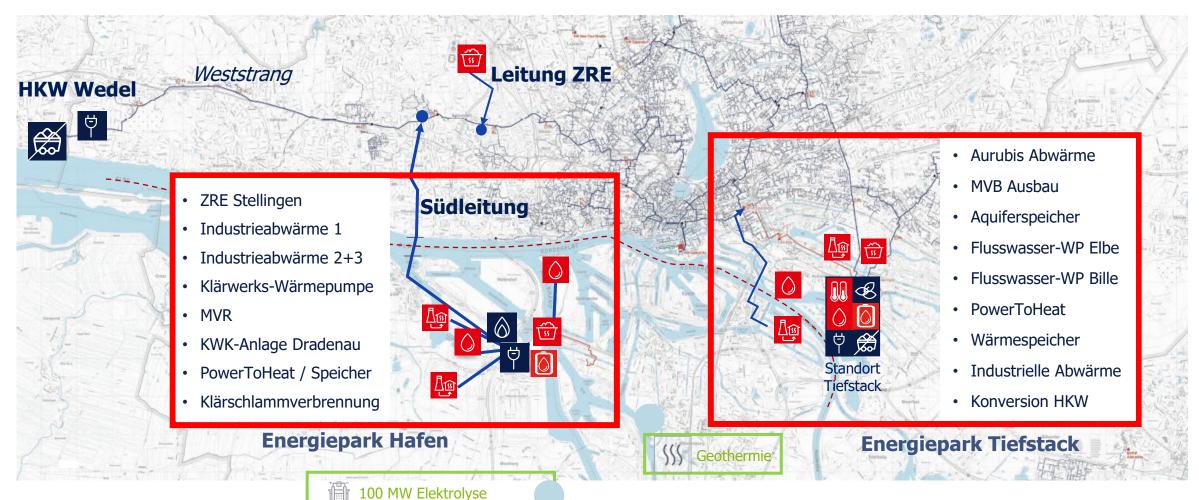
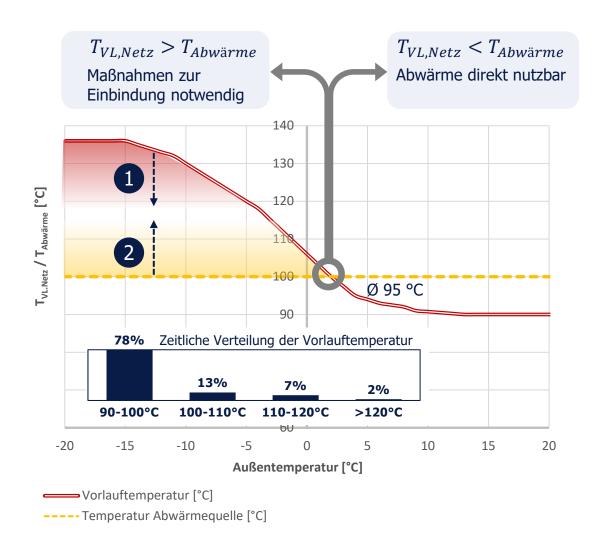
Speichern, Glätten, Auftoppen: Herausforderungen der Abwärmeintegration

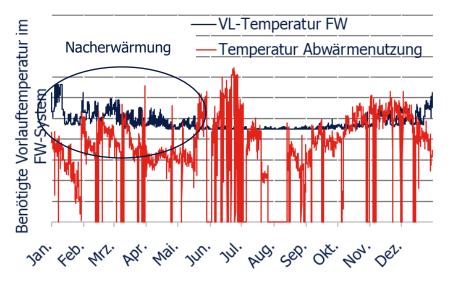

BMWK-Abwärmefachtagung

Dr. U. Liebenthal, Leiter Systemplanung Hamburger Energiewerke GmbH


Hamburg, den 05.10.2022

Transformation der Fernwärme: Ausstieg aus der Kohle bis 2030 klimaneutrale Wärmequellen, Power to Heat, (saisonale) Speicher, hocheffiziente KWK

Herausforderung Einbindung von Abwärmequellen


Nutzbares Temperaturniveau von Abwärmequellen kann bei gleitender Netzfahrweise zeitweise unterhalb des Vorlauftemperaturniveaus liegen

→ Ohne zusätzliche Maßnahmen keine vollständige Ausschöpfung des Wärmepotenzials möglich

Mögliche Lösungsansätze:

- 1 Absenkung des Vorlauftemperaturniveaus ggf. örtlich begrenzt (Bildung eines Sonder- oder Teilnetzes)
- 2 Auftoppung des Temperaturniveaus mittels weiterer Wärmequelle
 - zusätzlicher Erzeuger notwendig (Wärmepumpe, Kessel etc.)
 - Wärmeübertragung aus wärmerem Teilnetz (bspw. Dampf)

Integration industrieller Abwärme in ein FW-System erfordert Konditionierung

- Abwärmetemperatur unterliegt z.T. starker Fluktuation
- Netztemperatur und Abwärmetemperatur können sich kreuzen
- Nacherwärmung und Glättung durch Kurzfristspeicher notwendig

Temperaturverlauf der Abwärme bedarf Wärmekonditionierung durch regelbare Wärmeerzeugung und Kurzfristspeicher

- Abwärmeleistung unterliegt z.T. starker Fluktuation
- Abwärme ist i.d.R ungesicherte Wärme (Einspeisung nach Können und Vermögen)
- Abwärmeverfügbarkeit folgt nicht dem saisonal schwankendem Wärmebedarf

Abwärme bedarf Glättung, Besicherung und saisonale Speicherung zur besseren Ausnutzung

Wärmewende durch Sektorenkopplung: Aquiferspeicher am Energiestandort Tiefstack speichert industrielle Abwärme

Wärmepotenzial

 Abwärme aus thermischer Restmüllverwertung oder Industrieabwärme Wärmelastprognose 2030

Verlagerung der Netzeinspeisung durch saisonale Speicher

Einspeisepotenzial

Dez

Wärmeabnehmer

Hamburger Wärmenetz

Abwärme

Nutzwärme

Projektziel

- Erschließen ungenutzten Wärme-Einspeisepotenzials
- Effizienzsteigerung
 Industrieprozesse durch Ausnutzung der Abwärmepotenziale

Leistungsgrößen

Speicherleistung 2,6 MW

Kapazität 5 GWh (th)

- Perspektivisch Erweiterung 20 GWh

CO₂ Einsparung

bis zu

1.400 t CO₂/Jahr

Durch steigenden Anteil im Stadtnetz integrierter Abwärme wird das Stadtnetz langfristig dekarbonisiert

Entwicklung Einspeisepotential & Wärmelast bis 2045

Gründe für steigendes Einspeisepotential

- **Wachstum** um klimaneutrale Potentiale in der Erzeugung zu nutzen: *Erhöhung Wärmelast*
- Dämmung / Peakshaving im Bestand um Spitzenlast zu verringern: Reduzierung Verhältnis Spitzenlast: Grundlast
- **"Grundlast-Kunden"** um Last zu erhöhen: *Erhöhung Wärmelast + Reduzierung Verhältnis Spitzenlast : Grundlast*
- 4 **Saisonale Speicher** zur Verschiebung von Wärme in der Erzeugung

Umsetzung von Abwärmekonzepten im Energiepark Hafen: Ab 2025 werden klimaneutrale Wärmequellen intelligent vernetzt

Hamburger Energiewerke