

Sensor- und Datensysteme für Sicherheit, Nachhaltigkeit und Effizienz von H₂-Technologien & -Infrastrukturen

Univ. Prof. Dr.-Ing. Hans-Georg Herrmann Mitglied der Institutsleitung 28.05.2024

Strategische Forschungsprogrammatik des Fraunhofer IZFP

Leistungsfelder (LF) basierend auf vorhandenem, aus- und aufzubauendem FuE Portfolio

LF 1

Unkonventionelle **Sensorsysteme** für Volumen- und Oberflächeneigenschaften

LF 2

Software und Services zum **Sensordatenmanagement** entlang der Datenwertschöpfungskette

LF 3

Software und Services zur **Datenanalyse und Datenwertschöpfung** mit Klund ML-Techniken

LF 4

Beratung und ganzheitliche Leistungen rund um Messung, Prüfung, Datenwertschöpfung und Normung

Die Leistungsfelder dienen zukünftig als »Leitplanken« für die strategische Weiterentwicklung des Instituts

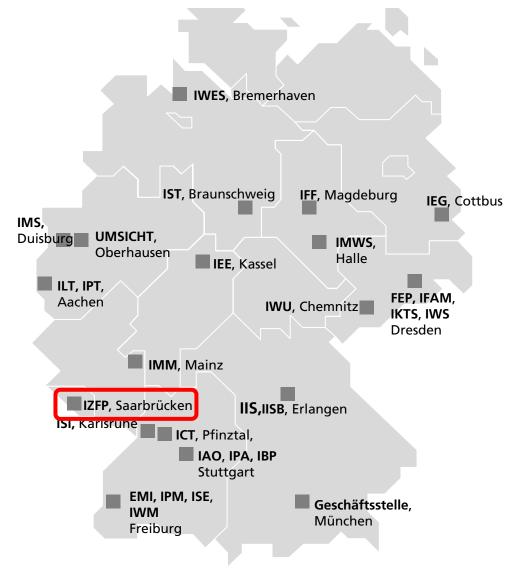
Starkes Bündnis für das Thema der Stunde

Systeme

Produktion

Energiesystem

Industrie


Mobilität und Transport

Sicherheit und Lebensdauer

- Profilschärfung innerhalb der H₂-Wertschöpfungskette
- Austausch- und Kooperationsplattform

FRAUNHOFER ARBEITSKREIS H₂- SICHERHEIT – LEBENSDAUER – ZUVERLÄSSIGKEIT, SLZ

Sicherheit, Lebensdauer und Zuverlässigkeit allein ist nicht alles,

... aber ohne Sicherheit, Lebensdauer und Zuverlässigkeit ist alles nichts!

Ruf von Innovativer Technologie "Made in Germany" fußt nicht allein auf der Technologie selbst

- SLZ wird auf höchstem Niveau vorausgesetzt, gilt international als Benchmark
- SLZ hat den Charakter von Vertrauen: leicht und schnell verspielt – wenn überhaupt wieder zu erlangen, langwierig und aufwändig

DER Schlüssel für Akzeptanz einer Wasserstoffwirtschaft

Wie wird gesellschaftliche Akzeptanz für eine Wasserstoffwirtschaft erreicht?

Die Gesellschaft muss von der <u>Sicherheit</u> überzeugt werden:

Sicherheitsrisiken und Unfallgefahren dürfen von Infrastruktur, Anlagen zur Speicherung, Verteilung, Umwandlung nicht ausgehen

Betreiber müssen mit langer <u>Lebensdauer</u> bei hoher <u>Zuverlässigkeit überzeugt werden:</u>

- Sicherheit, Funktion, Zuverlässigkeit und Lebensdauer wird...
 - limitiert durch H₂-spezifische lokale Werkstoffschädigungen infolge mechanischer, thermischer, chemischer oder elektromagnetischer Lasten im Betrieb
 - trotzdem nur dann negativ beeinflusst, wenn Schwachstellen unerkannt bleiben. Das muss nicht sein:
 - Durch Auswahl qualifizierter Werkstoffe minimier- oder ganz vermeidbar
 - Kontrolle durch systematisches Monitoring relevanter Zustands- und Prozessdaten

Valide Lebensdauerkonzepte rechtzeitig erarbeiten und berücksichtigen

Welchen Bedarf sehen wir? – Was tragen wir bei?

Öffentlichkeitsarbeit - Akzeptanz

- Fraunhofer Narrativ zu Sicherheit-Lebensdauer-Zuverlässigkeit
- Wissenschaftlich fundierte Mitwirkung bei Normung, Regularien, BG-Richtlinien, Umsetzungsempfehlungen
- Einbeziehung (Genehmigungs-) Recht sowie Ursachen- und Auswirkungsanalysen
- Sicherheitskonzepte speziell für Jedermann-Anwendungen

Brand- und Explosionsschutz

- Prognosefähige abstrahierte Simulationswerkzeuge für effektive ganzheitliche Bewertungen
- Robuste, evidenzbasierte Flamm-, Brand- und Explosionsschutzkonzepte
- Material sowie Komponenten- und Anlagenverfügbarkeit unter Explosions- und Brandbelastung

Resilienz – Analysen für Betrieb und Versorgung

- Resilienzphasen Konzept umsetzen und ausgestalten: Prepare Prevent Protect Respond Recover
- Entwicklung robuster Konzepte
- GIS-basierte Standortplanung und Potentialkartenerstellung "Resilience by Design"

Welchen Bedarf sehen wir? – Was tragen wir bei?

Sicherheit von Anlagen, Prozessen, Komponenten, Apparaten und Geräten

- Systemische bedarfsgerechte Betrachtung: Funktionale Sicherheit, Auslegung, Optimierung, Materialeigenschaften, Umwelt-/Alterungseinflüsse, Systemintegration
- Industrialisierung H₂-Elektrolyse, Brennstoffzellen, Speichersysteme
- Monitoring, kognitive Sensorik Konzepte

Materialien und Werkstoffe

- Ursachen und Mechanismen für Schädigungsprozesse in Materialien und Werkstoffen durch Wasserstoff ermitteln, verstehen und vermeiden
- Zuverlässige, betriebssichere und wirtschaftliche Bauteile und Anlagen aus geeigneten Werkstoffen entwerfen, auslegen, planen, prüfen und bewerten.

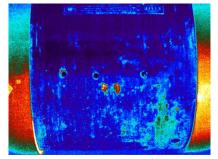
Monitoring und Messtechnik

- Quantitative Detektion, dauerhaftes Überwachen und Bewertung von Schädigungen bzw. Veränderungen von Bauteilen und Anlagen einer Wasserstoff- Infrastruktur
- Hohe Verfügbarkeit durch zuverlässige vorausschauende Instandhaltung mittels Monitoring
- Resilienter, unfallsicherer und langlebiger dokumentierter Systembetrieb zur kontinuierlichen Optimierung

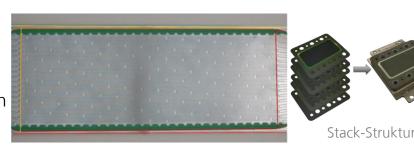
Sensor- und Datensysteme im Kontext Wasserstofftechnologien

Beispielanwendungen und -entwicklungen

Monitoring / Inspektion von H₂-Speicher und -Leitungen


- **Korrosion** (z.B. ElektroMagnetisch angeregter UltraSchall EMUS)
 - BMBF INTACT: Intelligente Sensor-Technologie zum Auffinden und Vermessen von gefährlichen Schäden über große Distanzen im nicht zugänglichen Bereich durch **a**ngewandte langreichweitige Multiparameter-Ultraschall**c**omputer**t**omographie
 - FhG H2D & H2D2: Eine Wasserstoffwirtschaft für Deutschland
- **Leckage** (z.B. Thermographie)
 - BMBF LeckStop: Leckageanalyse mittels spektraler Thermographie in der Produktion
- Wasserstoffbedingte Veränderung von Werkstoffeigenschaften (z.B. Mikromagnetik, Ultraschallmethoden, Röntgenmikoskopie)
 - FhG H2D & H2D2: Eine Wasserstoffwirtschaft für Deutschland

Qualitätsmonitoring Brennstoffzellen-Fertigung


- Fügeverbindungen von Stacks (z.B. Luft-Ultraschall, Thermographie)
 - BMWK SealS II: Qualitätssicherung von Brennstoffzellenkomponenten mittels innovativer Prüftechnik & kollaborativer Robotik sowie KI-gestützte Datenauswertung und Dokumentation
- Kontrolle des Stapelprozesses von Bipolarplatten (z.B. Optik, KI, digitaler Zwilling)
 - BMWK H2SkaProMo: **Ska**lierbare cyber-physische **Pro**duktionssysteme zur **Mo**ntage von Brennstoffzellen-Stacks

EMUS-Prüfsystem für Rohrleitungen

Thermographische Prüfung eines H2-Speichers

Optische Aufnahme von Bi-Polarplatte mit Merkmalssegmentierung

Vielen Dank für Ihre Aufmerksamkeit

Sensor- und Datensysteme für Sicherheit, Nachhaltigkeit und Effizienz

Besuchen Sie uns auch auf www.izfp.fraunhofer.de, Facebook, X, LinkedIn und XING